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ABSTRACT 

An implementation of the path adaptive guidance mode involves the generation of a manifold 
of precalculated o9timaI trajectories through a numerical solution of the Euler-LaGrange 
equations, followed by approximations of the control variables as functions of the state 
variables. These approximations, typically, are restricted to polynomials and/or ratios 
of polynomials. The Gram-Schmidt orthonormalization process has been described in pre- 
vious reports as an efficient procedure for the generation of these approximations. The 
studies described in this final report pertain to several problems arising in the general 
approximation process and to a treatment of the guidance and control problem a s  a stochas- 
tic process. The latter study introduces several concepts of stability for the Euler-LaGrange 
system of differential equations and suggests problems which will require further study. 
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. . 

I. INTRODUCTION 

The implementation of the concept of Path Adaptive Guidance developed in past reports 
(References 1, 2 and 3) requires that the control functions be functionally represented and 
available onboard the vehicle. The first approach to the problem of obtaining representa- 
tions of these control functions involves the use of a large number of optimized, tabulated 
trajectories. This manifold of trajectories encompasses all possible disturbances which 
can affect the flight of the vehicle but which still permit the completion of the mission. 
Data obtained from these trajectories is then used for approximation of the control func- 
tions - pitch and yaw steering angles and cutoff time - for each particular mission. The 
control functions a re  approximated by some linear or non-linear combinations of functions 
of independent state variables. As this approach is developed, several important sub- 
problems can be identified: 

1. 

2. 

3. 

4. 

Necessary and sufficient representation of the control functions a s  a set o r  sub- 
set of tabulated trajectories. 

The representation of the control functions by a combination of functions of the 
state variables - a model of the control functions. 

Evaluation of the undertermined coefficients of the model by numerical means 
according to some error  criterion using the set  of tabulated data as  a suitable 
subset thereof. 

Using the control functions in simulated flights (or by the application of stochastic 
processes) to obtain probability statements about the success with which the mis- 
sion requirements a r e  met. 

All of these problems have been examined in some detail. The ensuing discussion will 
detail some results which have been obtained and the state of current investigations being 
pursued to resolve other problems. 

1 



. 

II. MANIFOLD OF TRAJECTORIES 

Typically, tabulated data representing the manifold of trajectories has been generated by 
numerical solution of the Euler -LaGrange equations for the minimum fuel problem under 
a range of initial conditions covering that range expected and with which the mission is 
fulfilled. When the number of stages involved is three o r  greater, the number of trajec- 
tories and, consequently, the amount of tabulated data becomes large. This is due to the 
rapid increase in number of combinations of disturbances possible. For three dimensional 
solutions, this situation is aggravated to an even greater extent. Finally, when disturb- 
ances a r e  interjected, randomly o r  regularly, along a trajectory path (rather than only at  
the staging points), the amount of tabulated data becomes excessive or  even prohibitive. 

An obvious test for the necessity for inclusion of a particular trajectory in the manifold 
to be generated is the degree of change in the coefficients of the control functions derived 
from the data. But this leads to an apparently paradoxical requirement by requiring the 
obtaining of a judgment as to the effect of the inclusion of a trajectory before the set of 
trajectories have been computed. This test also implicitly assumes that the model has 
the true form of the particular control function being sought. If limitations of the vehicle 
guidance computer constrain the choice of form of control function (e.g., to polynomials 
o r  ratios of polynomials), methods used in the design of experiments (Reference 10) pro- 
vide a possible means to limit the number of trajectories to be computed. The levels of 
the state variables used in the design of experiments method would be constrained by 
bounds imposed through applications of astrodynamics in mission planning. The deter- 
mination of launch ‘‘windows” is a well known exampie of imposing bounds on the levels 
of state variables. 

If the values taken on by the state variables a re  regarded as having probability distribu- 
tions, then the above point of view would seem to have some validity. 
nate interpretation views each computed trajectory a s  success o r  failure with respect to 
meeting mission requirements. Assuming that the manifold of trajectories has some 
n-dimensional geometric shape (e. g. , a hyper-cone or  hyper-rectangle), then trajectories 
a r e  generated which pass through specified n-dimensional points. 
points, the region of accuracy of the control function approximations can be described. 
This region is given by the ranges of values of the state variables. 

A combination of these methods is required for efficiency and completeness. Experi- 
mental design yields information a s  to the spacing of the required points while n-dimen- 
sional geometry provides for a description of the shape of the region covered by tabulated 
data. Methods of numerical approximation generally require both kinds of information. 

However, an alter- 

Using this manifold of 
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In. MATHEMATICAL MODELS OF THE CONTROL FUNCTIONS 

For several reasons, the mathematical models of the optimal control functions may be 
constrained to some subclass of functions. As an example of such a constraint, the onboard 
computer instruction time and/or repertoire may restrict the class of rational algebraic 
functions to polynomials due to the absence or slow speed of a division instruction. In the 
past, mathematical models of the optimal control functions have been restricted to polyno- 
mials in the position and velocity components @, y, z, dx/dt, dy/dt, dz/dt) and other meas- 
urable state variables; thrust (F), mass flow (dm/dt), and time (t). The assumption of such 
a model entails problems in both the evaluation of the coefficients of the polynomial terms 
and the representation of the proper manifold of trajectories for their numerical evaluation. 
If one assumes a geometrical region R for this manifold - through insight, n-dimensional 
visualization, etc. - the second problem disappears and the first is simplified. 

If a geometrical region R is assumed, then orthogonal polynomials can be generated over this 
region by the Gram-Schmidt process. This process is described in detail in Progress Re- 
ports 3 and 4 where the inner product (f, g) of the functions f@) , g@) over the regions is de- 
fined as follows: 

- - 

Since geometrical properties of R are assumed, any number of quadrature formulas may be 
developed to obtain values of inner products. This problem is further discussed in the next 
section. The Gram-Schmidt orthonormalization also allows the elimination of insignificant 
terms (References 2 and 3). 

R. E. Wheeler in Progress Report No. 4 (Reference 4) has made a direct approach to the 
problem of the model. While his results hold only for a restricted case, they indicate that a 
non-linear form is more appropriate than the assumed polynomial model. Evaluation of the 
coefficients in his model (the ratio of two polynomials) is more difficult than in the case of the 
polynomial not only from the standpoint of the numerical procedures involved but also from 
the fact that several sets of coefficients may give satisfactory approximations. That is, the 
sets of coefficients {ai) and {a*i) may not be unique in the expression (the least “p”th approxi- 
mation model). 
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where x is one of the control functions being approximated, the xi are state variables and 

If the terms appearing in the rational approximation are not arbitrary but have been derived 
through considering the equations of motion and the calculus of variations, then the region R 
should no longer be of critical importance in the determination of {ai) and {ai}. However, R 
must be large enough to include all relevant disturbances in the state variables. Otherwise, 
one may obtain sets of coefficients {ai} and {ai} that yield an approximation with insufficient 
accuracy over wide ranges of values in the state variables. More precisely, if 

usually p = 1, 2, OD 

ai(i =1, 2, . .., m) 

results from using R as the region of integration in Equation (l), then I a; - .‘.*I < 6) and I a. - a* I E. for j = 1, 2, . . . , m for any larger region R* Z) R of integralion. The cjYS 

and E* 
procedure. 

I 
J l  I 1  

are small positive constants of the same order as the errors  of the computational 
J’S 
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1V. EVALUATION OF THE COEFFICIENTS O F  THE SELECTED MODEL 

A. LINEAR MODELS AND THE SELECTION OF POINTS 

In the case where the selected model is a multivariate polynomial approximation, the Gram- 
Schmidt Orthonormalization procedure (G.S. 0. Procedure) may be applied directly as de- 
scribed on the preceding page and in more detail in References 2 and 3. One of the more 
important problems which arise in the application of G. S. 0. is the selection of points from 
the manifold of tabulated trajectories. As discussed briefly on the preceding page, the points 
must be selected in such a way that adequate quadrature formulas can be constructed for the 
computation of the inner product which at the same time provides a sufficient representation 
of the integration region. It is at this point that it may be discovered that additional trajec- 
tories are required to provide additional points in the n-dimensional integration region. The 
ensuing discussion describes in detail the generation of particular quadrature formulas for 
various assumed regions. 

One of the basic concepts introduced in the description of the G.S.O. Process (Reference 2) 
was that of the inner product, (g,f), of two functions g and f .  It was defined there as a real 
valued functional having the properties: 

i.(f1 + f,,g) = (f1,g) + Cfz,g) 

ii.Cf,g) = @,f! 

iii. (af, g) = a@, gi 

iv. (f,f) 2 0 (1 i 

For the purpose of approximating functions of many variables (i.e. in the present case, these 
are  the control functions) the inner product of two functions f l  and fz  was defined as 

n 

j =l 

where j indicates the value of the function at the jth data point. Immediately the question of 
how the n data points and weights, y., are selected arises. In the case of control functions, 

J 
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a manifold of trajectories, optimal for some particular mission,define a hyper-volume V 
over which the inner product must be defined by 

The data points and weights are selected then to approximate a multiple integral over the 
volume V. For certain classes of functions, the quadrature formula in (3) will be exact. 
This condition may be used to determine the points and weights. 

For most missions the geometrical shape of the hyper-volume V is unknown. Hence, in 
order to carry out the integration in (3), some approximation V’ to V in terms of known poly- 
topes must be made from the set of tabulated trajectories by numerical means. The proper 
selection of the approximation V’ must be made with care since even the choice of relatively 
simple geometrical shapes can lead to extreme analytic difficulties in the evaluation of the 
multiple integral, / V‘ . . p g d V ’  

An approach which has proved helpful in the proper choice of volumes V’ involves a partition- 
ing the volume V into small segments Vi which cover the original volume V. Then one may 
devise quadrature formulas over approximations Vi to these smaller and simpler volumes, Vi. 
To this end we now consider the form of the data obtained in the generation of optimal trajec- 
tories. 

In computing optimal trajectories for a given mission, the result takes the form of a tabu- 
lation. 

where the subscript i refers to the ith point on a particular trajectory, 8 and @ are steering 
angles, while T is time remaining until cutoff and ti is time from lift-off. 8, $ and T are 
functions of the state Variables xl, x2, . . . , Xm, t. Approximations of 8, Cp, and T are re- 
quired as a basis of an optimal guidance method. A linear combination of functions fk  of the 
state variables is a type of approximation easily used by existing guidance computers. If the 
functions fk are monomials in the state variables the problem of evaluating the approximation 
in flight is further simplified. 

Corresponding to M initial conditions, there will be M trajectories tabulated for a mission. 
For reasons that will be apparent later, the values of ti on the M trajectories are the same, 
i. e.,  all M trajectories have the (m + 3)tuple Si given at regular equal intervals T of time. 
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By letting to  = 0, tl = T, 
mum value of each state variable xi, x2, . . . , % by inspecting the components of the M 
vectors Si. This is easily accomplished with a subroutine on a digital computer. These 
values will be used to define the quantities. 

= 27, . . . at each ti it is possible to find the maximum and mini- 

The symbol Max means the maximum over the M trajectories. The value of hji is used to 

define the lengths of an edge of a hyper-rectangle (orthotope). 
M 

In order to evaluate the integral in Equation (3), the volume V is divided into segments lying 
between time ti and tie. Each of these segments is then approximated by a hyper-rectangle 
Ri with the edge lengths hj , i y  j = 1, 2, . . . , m + 1 parallel to the jth axis. The length hm+i, 
is equal to two time intervals 

hm+i,i = I t ie  - ti 1 = 27 

Without referring to a particular time ti, we can discuss quadrature over any hyper-rectangle 
R with center at 

and edges of length hj. This formula has the form (with e r ro r  E) 

where 

and the superscript indicates the points for the quadrature formula. Thus, xzk is the jth com- 
ponent of the vector with superscript 2k. From Reference 5, the components of the 2m+3 
vectors used in (6)  are given by: 

J 
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m+l 
W = r  hj  

j=l 

(11) 

where 6jk is the Kronecker delta. This quadrature formula will be exact for second degree 
polynomials. 

A much simpler,, but more erroneous, quadrature formula results from the direct applica- 
tion of the mean value theorem. In this case the integral over a hyper-rectangle R would 
take the form 

The e r ro r s  El and E2 are composite ones resulting from approximating the volume V by V’, 
f(x) not being a function for  which the quadrature is exact, and the computational roundoff 
errors .  
- 

B. NON-LINEAR APPROXIMATIONS - RATIONAL FORXS 

If the mathematical model of the control functions assumes a rational form, then several 
methods are immediately available to determine the coefficients {aj) , {a;}. Moreover, these 
methods have been programmed and used. They are: 

Direct use of orthonormalization by removing the denominator of the model through 
multiplication. 

0 A modified Newton-Raphson (Gauss-Seidel) method combined with steepest descent 
with a least squares e r ro r  criterion. 

0 A modified Linear Programming system. 
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The orthonormalizational approach to rational approximation was described in Reference 2, 
p. 233. In that approach, the model assumed was: 

where Pi and P2 were polynomials of a given degree in the state variables xi, x2, . . . , xn. 
Then the linear form 

was used to determine the coefficients of Pi and P, by an iterative method. This method is 
useful since no initial guess must be made for values of the coefficients. It may happen that 
even after iteration, the coefficients are  not too near the value which minimizes 

where the subscript indicates the value of variables at the j-thdatapoint. If this proves to 
be the case, the modified Newton-Ralphson method may be used with the coefficients obtained 
from Equation (16) as the initial guess. 

The modified Newton-Raphson method has been described in great detail in Reference 6. 
Essentially, it consists of linearizing the non-linear approximation by a Taylor series ex- 
pansion about the coefficients. Letting f be the approximation of the control function x, we 
have 

x - f (x ,  - ao, . .., am, ai, . . ., a i j  M 

A a i  af af af af 
Aam+, Aai+ ... +- 

8% 8% a0 aa i  
z -  A a o +  ... +- (17) 

where the subscripts on the ak and a i  refer to those used in Equation (1). In other words, 
the e r ro r  e is expressed in terms of differences Aak, A b  in the coefficients ak and aL. 
Starting out with an initial guess of the coefficients aky aky we may use the usual least squares 
method of an orthonormalization code to obtain estimates of the Aak, Aai  from the equations: 

tr 

r 1 

m+L+i a. 
e j a  - Aai 

ai 
i = O  

j = 1 ,  2, ..., n 

(am+i+i = ai)  
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where the subscript j refers to the j-th data point. At  each of p steps, a correction is made 
to the coefficients ak, a i  

O < h s l  
+ Mak, p+i , k, p+l - ak, P 

- a (1 9) 

Equation (19) results after (p+l) steps in estimating the coefficient %. The value of h is de- 
termined by some modified method of steepest descent. One advantage of a computer program 
using this procedure is that the approximation need not be restricted to a rational form in the 
state variables. The method based on linear programming (Progress Report No. 4, p. 287) 
would seem to have such a restriction. 

Whenever the approximation is a rational form, there is the possibility that several of the 
zeros of the denominator may occur within the range of values taken on by the state variables 
during a flight. The determination of the zeros of a polynomial in many variables is a prob- 
lem of extraordinary difficulty. However, conditions may be placed on the coefficients of a 
polynomial that are sufficient to guarantee its being positive for all o r  some real values of 
the variables. Trivial examples would be requiring the polynomial be a positive definite quad- 
ratic form or that all the coefficients be positive with the variables taking on positive values. 
More general results appear in a paper by Perlin (Reference 7). There would seem to be 
only minor difficulties in altering the denominator of a rational approximation to insure that 
it did not become zero in the domain of the control function. 
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V. A STOCHASTIC VIEW O F  PATH ADAPTIVE GUIDANCE 

Once the approximation of the optimal control functions a re  sufficiently accurate in terms 
of the e r ro r  criterion used, i t  is necessary to assess the worth of the approximations by 
simulated flights. Ideally, we would like to dispense with the simulation and make a prob- 
ability statement concerning the control system’s properties from the magnitude of the 
errors  of the approximation at  the data points used. These properties would include such 
items as accuracy in position, velocity, time, fuel used in excess of a true optimal flight 
path, and sensitivity to e r rors  in  input from the vehicle’s sensors. 

We leave the deterministic point of view for the purpose of making probability statements 
about the success of a set of approximations of the control functions. The successive 
states of a space vehicle along i ts  flight path can be regarded a s  a Markov process o r  
more exactly a discrete, finite, multiple Markov vector chain. A finite Markov chain is 
defined a s  a Markov process whose random variables & (vector valued) can assume values 
in a certain set of vectors {Y& t = 1, 2, . . . , N with probability 1. - 

Definition: (Reference 8) Let T be an index set  (also called parameter set), then a 
(simple) Markov process is a process b t ,  tcT} such that for any integer n 2 1, if 

i’ 
ti < . . . < tn a re  parameter values, 

a r e  the same a s  the conditional probability given x in the sense 
the conditional probabilities of xtn given xt 

XtZ, , xtn-i tn-i 
that for each real number V 

A Markov process is a multiple process if 

A random process is a family of random variables {xs. 

Less exactly, a simple Markov process is a process in which the value that y takes on 
de - depends only on the value that ytn - assumed. In the multiple Markov process, ytn 

pends on the values of the u previous random variables yh-u,  . . . , ytn-i. One might say 
that Markov processes, when referred to particle dynamics, a r e  generalizations of New- 
tonian mechanics. 
simple Markov process. The index set  T o r  parameter set  is time in most applications. 

tn 

The multiple Markov process is more of a generalization than the 
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In the present case 

T =  t - t  < t j < t c  J I  
where t L  is the time of earliest possible liftoff and tc is latest possible cutoff for a success- 
ful completion of the mission. One also could use the time interval over which control is 
possible for all possible variations of the state of the vehicle during its flight. 

After suitable simulation, an estimation of the probability of successful completion of the 
mission, with the given control functions, can be made. This may take the form, in the 
simplest approach, of recording the flight a s  a success o r  failure by asking: Was the state 
of the vehicle one of those classified a s  successful in the time interval [ t Si' ts,]? For 

computer use, the idea of an absorbing barrier can be used. If a criterion can be formulated 
explicitly, in the form of a computer program subroutine, to distinguish between the two 
classes of flights then there are two absorbing barriers which terminate the simulated flights: 
one defined for a successful mission and the other for an unsuccessful completion. 

A more suitable approach, in terms of ease of execution, would be to fix some nominal point 
with a region defined about it a s  one into which a trajectory must enter to be a success. This 
region can usually be given in the form of an ellipsoid 

where the xNi a r e  fixed values of the state variables (the coordinates of the point) and the 
xi a r e  components of a vehicle's state vector x previously referred to. Assuming a normal 
distribution for each xi, we would like to make a probability statement 

This states the probability of a successful mission given the set of approximations of the 
optimal control functions. The most direct way of obtaining values of p in equation (9) is 
by the numerical integration of distribution function of 

i=i 

o r  of i ts  inverse Fourier transform. 
Fourier transform of the distribution of Qn has been solved by Imhof (Reference 9). 

The problem of numerically integrating the inverse 
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Qn is transformed into a linear combination of independent noncentral chi-square variables 

n 

r=i 

where 

h 

i=z 

The X i  are independently distributed N(O,l), i. e., unit, central normal variates. Making 
use of the fact that 

Pr [Qn d k] = 1 - Pr [Qn > k] 

we arrive, through involved procedures, at  the equation 

where 

[71 

The parameters A,, 6, may be estimated from the data obtained in simulated flights, while 
hr is known exactly and is usually called the “degrees of freedom” of the chi-square distri- 
bution. The approach followed here need not be restricted to an ellipsoid about some point 
- XN. The “region of success” may be extended to ellipsoids about several points. 
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VI. RECOMMENDATIONS FOR FUTURE WORK* 

A problem of fundamental importance in the development of space flight is that of control 
and stability of the trajectory of a space vehicle. Because of the large number of factors 
which influence the trajectory, it is difficult, if not impossible, to construct a vehicle 
whose trajectory will  be, in any reasonable sense, inherently stable. It is therefore, 
necessary to introduce control devices in order to make corrections in the trajectory 
which will enable some acceptable criterion of stability to be satisfied. In recent years 
a considerable amount of research in the area of control and stability has been done by 
engineers and mathematicians. In the main, these studies have been carried out within 
the framework of the theory of differential equations. A survey of the relevant literature 
was conducted in order to study and characterize the various approaches to control and 
stability that have been formulated; with particular attention being given to the large num- 
ber of Soviet contributions to the subject. The approaches can be characterized a s  deter- 
ministic, stochastic, and mixed, i. e., deterministic and stochastic. While considerable 
progress has been made toward the solution of certain special cases of control and 
stability, it is clear that much work remains to be done before a satisfactory theory is 
developed which will be applicable to a realistic treatment of the control and stability of 
space vehicle trajectories. 

The approach we propose is based on the study of the fundamental Euler-LaGrange equa- 
tions (E-L eqs) within the framework of the theory of random differential equations. Ran- 
dom solutions of the E-L eqs will arise i f  we solve the E-L eqs with either (1) random 
initial conditions, (2) equation parameters subject to random variations, or (3) a combina- 
tion of (1) and (2). In each of the above cases a family of solutions (realizations, or tra- 
jectories) of the E-L eqs will be generated, the family of solutions generated depending, 
of course, on the nature of the probability distribution imposed. While it is relatively easy 
to write down random analogues of the E-L eqs, the analytical difficulties involved in ob- 
taining the random solution and its probability distribution a re  considerable. In view of 
these difficulties, we propose the use of computer methods in the study of the random 
solutions generated by the E-L eqs, in each of the three cases mentioned above, when 
various probability distributions a r e  assumed. Computer methods will not only enable 
us to generate a large number of solutions, but will permit the computation of moments 
and other statistics associated with the random solutions. 

-- - 
* The study described in this section represents the joint effort of Chrysler Corporation 
Missi le  Division and its subcontractor, Dr .  A. T. Barucha-Reid, of Wayne State Univer- 
sity. Acknowledgement is hereby given to Dr. Barucha-Reid for the preparation of this 
s ec tion. 
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As concrete problems, we propose that the following cases be investigated: 

1. 

2. 

3. 

4. 

One-stage, fixed target, with random initial conditions. 

One-stage, fixed target, with random variation of equation parameters. 

Combination of 1 and 2. 

Two-stage, fixed target, with random initial conditions and random variation 
of parameters. In this case the positions at  the end of the first  stage will 
form a set of random initial conditions for the solution of the equations in the 
second stage. 

Three-stage, fixed target, with conditions the same as 4. 5. 

For all of the above cases we suggest that as a first approximation a Gaussian distribution 
of the initial conditions and equation parameters be assumed. 

Several criteria of trajectory stability have been formulated. The first  is what might be 
classed as stage stability, a s  this involves the probability that the trajectory lie within a 
given subspace of the state space throughout a given stage. The second is what might be 
termed stability with respect to target, as this involves the probability that at the end of 
the flight the trajectory reach a given region of the state space (see Section V, equation 4). 
In the case where the state vector has three position components and three velocity com- 
ponents, the condition to be imposed is that the trajectory reach a spere of specified radius 
in 6-dimensional state space, the center of which is the desired target. A third type of 
stability can be introduced which involves both stage stability and stability with respect to 
target. Analogous concepts of mean stage stability and mean stability with respect to 
target can also be defined. 

When the numerical solutions a r e  available it is suggested that those cases which yield 
solutions or  trajectnries with desired characteristics be formulated as random differential 
equations and studied analytically. 
cerning the stochastic processes generated by random solutions of the E-L eqs. 
stage control theory can be introduced, for the problem can then be formulated a s  the con- 
trol and stability of the realization of a concrete stochastic process. 

I In this way we can obtain more rigorous results con- 
A: this 
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